Using CFD and an Overlapping Grid to Model the Low Temperature Oxidation Process in a Coal Discard Heap

G.J.C. Wessels

CSIR: Modelling and Digital Science
Advanced Mathematical Modelling

6 December 2012
Outline

Coal Discard Heaps
 The Problem
 The Chemistry

Methodology
 The Tools
 Overlapping Grids
 Chemistry

Results
 Method Comparison
 Simulated Results
 The Solution

Future Work
 Problems
Coal Discard Heaps - The Problem

- What is Low Grade Coal?
 - "Brown Coal"
 - Low Carbon, High Moisture
 - High Ash Content
 - Already burned/used

- Spontaneous Low-temperature Oxidation

- Heap configurations
Coal Discard Heaps - The Problem

- Emits CO$_2$
 - Discard heap emits1 12 – 8200 kgCO$_2$m$^{-2}$y$^{-1}$
 - Carbon Commodity Market: 2013-2020, Carbon credits could average €12 per ton CO$_2$

© CSIR 2012
Coal Discard Heaps - The Problem

- Emits CO_2
 - Discard heap emits1 $12 - 8200 \, kg CO_2 \, m^{-2} \, y^{-1}$
 - Carbon Commodity Market: 2013-2020, Carbon credits could average €12 per ton CO_2
- Chemical Processes also produces Heat
 - can lead to combustion

Chemical Reactions

Oxidation

\[1.05C(s) + O_2(g) \rightarrow 0.1CO(g) + 0.95CO_2(g)\]

Gasification

\[H_2O(g) + C(s) \rightarrow CO(g) + H_2(g)\]

Hydrogenation

\[H_2(g) + C(s) \rightarrow CH_4(g)\]

Water-Gas Shift

\[H_2O(g) + CO(g) \rightarrow CO_2(g) + H_2(g)\]

Methanation

\[CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)\]

Boudouard

\[CO_2(g) + C(s) \rightarrow CO(g)\]
Coal Discard Heaps - The Chemistry

▶ Chemical Reactions

Oxidation
\[1.05C(s) + O_2(g) \rightarrow 0.1CO(g) + 0.95CO_2(g) \]

Reaction Rate:
\[R_1 = 2 \times 10^6 nO_2 e^{-\frac{57400}{8.314T}} \text{ [mol.s}^{-1}] \]

Heat Source:
\[E_1 = (-300 \times 10^3) R_1 \text{ [J.s}^{-1}] \]

Gasification
\[H_2O(g) + C(s) \rightarrow CO(g) + H_2(g) \]

\[R_2 = 810n_{H_2O} e^{-\frac{147000}{8.314T}} \text{, } E_2 = (131 \times 10^3) R_2 \]

Hydrogenation
\[H_2(g) + C(s) \rightarrow CH_4(g) \]

\[R_3 = 0.0061n_{H_2} e^{-\frac{80400}{8.314T}} \text{, } E_3 = (-74.85 \times 10^3) R_3 \]

Water-Gas Shift
\[H_2O(g) + CO(g) \rightarrow CO_2(g) + H_2(g) \]

Methanation
\[CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g) \]

Boudouard
\[CO_2(g) + C(s) \rightarrow CO(g) \]
Methodology - The Tools

- Requirements
 - Chemical Reactions
 - Conjugate Heat Transfer
- Computational Fluid Dynamics
- OpenFOAM
 - Open Source
Methodology - Overlapping Grids

- Model discard heap as a porous medium
- Assume spherical particles
- Overlapping grid represent porous section
- ‘Split’ porous into solid (red) and fluid (green) sections
 - Solid: Conduction, heat generated by chemical processes
 - Fluid: Convection
 - Conjugate heat transfer between phases
- Conventional methods assume thermal equilibrium between the gas and solid phases.
Methodology - Chemistry

- Heat generated calculated based on the content of oxygen available
- Heat transfer:
 \[\nabla \cdot (\rho hu) = \nabla \cdot (k_{eff} \nabla T_f) + \int_V \frac{h_a}{V} (T_{S_s} - T_f) dV + (1 - \epsilon) r_{O_2} \Delta H_{O_2} \]
- Heat of reaction of oxygen: \(\Delta H_{O_2} \)
- Rate of oxidation: \(r_{O_2} = K_1 C_{O_2} \)
 where \(K_1 = (8.828 \times 10^6) e^{-6950/T_{gas}} \) and \(C_{O_2} \) is oxygen’s mass fraction.
- Specie equation for oxygen: \(\nabla \cdot (\rho C_{O_2} u) = \nabla \cdot (D_{O_2} \nabla C_{O_2}) - r_{O_2} \)
Results - Method Comparison

- Analytical: 753.53 K
- Fluent: 754 K
- OpenFoam: 757 K (Solid), 740 K (Gas)
Results - Method Comparison

- Analytical: 753.53 K
- Fluent: 754 K
- OpenFoam: 757 K (Solid), 740 K (Gas)
Results - Method Comparison

Analytical: 753.53 K
Fluent: 754 K
OpenFoam: 757 K (Solid), 740 K (Gas)
Results - Simulated Results

- Initial 2D solution
- Assumptions:
 - A homogeneous, porous trapezoid
 - Only 3 chemical processes present
Results - Simulated Results

- Initial 2D solution
- Assumptions:
 - A homogeneous, porous trapezoid
 - Only 3 chemical processes present
Results - Simulated Results

- Initial 2D solution
- Assumptions:
 - A homogeneous, porous trapezoid
 - Only 3 chemical processes present

![Coal Simulation]

© CSIR 2012
Results - Simulated Results

- Initial 2D solution
- Assumptions:
 - A homogeneous, porous trapezoid
 - Only 3 chemical processes present

Porous
Results - Simulated Results
Results - Simulated Results

- 3D
Results - Simulated Results

- 3D

Contours of Static Temperature (k)
Results - Simulated Results

3D

Contours of Molar Concentration of co2 (kmol/m3)
Results - The Solution

- To prevent chemical reaction
- Heat
- O_2

Results - The Solution

▶ To prevent chemical reaction

▶ Heat
 ▶ Water: Increase methane production, 21x more potent than CO2 as greenhouse gas;
 Acid mine drainage
 ▶ Extract Heat: Produce Electricity

▶ O2

Results - The Solution

- To prevent chemical reaction

- Heat
 - Water: Increase methane production, 21x more potent than CO_2 as greenhouse gas;
 Acid mine drainage
 - Extract Heat: Produce Electricity

- O_2
 - Cover heap with layer of soil

Results - The Solution

- To prevent chemical reaction

- Heat
 - Water: Increase methane production, 21x more potent than CO₂ as greenhouse gas;
 Acid mine drainage
 - Extract Heat: Produce Electricity

- O₂
 - Cover heap with layer of soil²
 - Compact coal after dumped²
 - Redesign heap to limit O₂ ingress

Future Work - Problems

- Method
 - Complex chemical reactions
 - Heterogeneous porous medium
 - Transient simulation - take weather conditions into account
 - Reduce reactive coal content over time
Future Work - Problems

- Method
 - Complex chemical reactions
 - Heterogeneous porous medium
 - Transient simulation - take weather conditions into account
 - Reduce reactive coal content over time
- Do not fully understand heap:
 - Internal Structure (old/ large heaps)
 - All mechanism responsible for emissions, chemical or environmental
Thank You

- Njabulo Siyatshana, CSIR:MDS
- Louis Le Grange, MTech Industrial